Anatomy and Cell Biology
School of Medicine > Anatomy and Cell Biology > Faculty > Brenda Rongish, PhD
School of Medicine > Anatomy and Cell Biology > Faculty > Brenda Rongish, PhD
Associate Professor
Publications:PubMed
Research in the lab is interdisciplinary and focuses on the dynamic nature of the extracellular matrix, the milieu that surrounds the cells, and contributes to their shape, locomotion, gene expression, and every aspect of their behavior. Cells move, and ECM can be passively displaced because of individual cell motion or the motion of entire sheets of cells. Like cells, ECM can be “fate-mapped” and shown to be moved and organized to best suit the developing embryo. To study these dynamic molecules we use automated microscopes and fluorescent probes to perform time-lapse imaging of avian developmental events and the role of the ECM in these events. QuickTime movies provide a way to observe developmental processes, while collaborations with biomedical engineers and physicists allow precise computational analyses of both cell and ECM behaviors (trajectories, velocities, directed vs. random motion of cells).
In order to undergo complex folding and twisting events that are necessary for proper development, the embryo must both respond to forces generated by cell movements and resist tearing itself apart. Since the ECM cannot move by itself, it can be used as an indicator of these forces. The ECM can also act in a structural manner to transduce these forces. We have shown that the ECM can align in response to forces acting upon tissues, and that this organization is critical to proper morphogenesis. Experiments in the lab focus on disrupting this organization and studying the resulting phenotypes, which affect bilateral heart tube fusion, gastrulation, segmentation, neurulation, and other critical developmental events. ECM molecules of interest include the fibrillins, fibronectin, fibulins, integrins, MMPs and others.
Questions of immediate interest include: Do the multiple components of the ECM meshwork retain unique functions pertaining to their organization, or does the ECM function as a composite? What is the source of the forces that cause ECM to be displaced relatively vast distances in the embryo; i.e. to be made in one place and used in another? How does MMP activity relate to cell motility and ECM displacements? Can the material properties of the embryo be measured, and if so, will they differ in embryos in which the ECM has been perturbed? Can we model, and thus predict, abnormal phenotypes resulting from disorganized ECM in certain times and places? How do cell and ECM "motion" correlate in vivo? What is the role of the ECM in developmental signaling pathways?
Support
Rongish, B PI
Computational Imaging of the ECM During Avian Heart Morphogenesis
NIH/NHLBI
Little, C Co-Investigator; Rongish, B Co-Investigator; Czirok, A Co-Investigator
Deciphering the Biomechanical Morphogenetic Code
Mathers Charitable Foundation
Contact information
The University of Kansas Medical Center
Department of Anatomy and Cell Biology
1008 WHW
3901 Rainbow Blvd.
Kansas City, KS 66160
(913) 588-1878 (office tele)
(913) 588-1857 (lab tele)
(913) 588-2710 (fax)
![]() |
![]() |
![]() |
| Alan Petersen Systems Analyst B.S. Secondary Education, Mathematics and Computer Science – Wayne State College 15+ years of experience in Information Technology including: application design, user interface design, programming, project planning. Personal and professional interests: Open Source software and philosophy, software design, writing, natural history, game structure and design, steam engines, astronomy, game theory, computer science, public education, firearms and military technology of the mid and late 19th century, music (particularly traditional), and animation |
Tracey Cheuvront Research Associate B.S. Biochemistry (with emphasis in exercise physiology)--Kansas State University Academic Interests: Biology--from atoms to ecosystems and anatomy to behavior. Exercise science --from molecular physiology and substrate metabolism to system plasticity and training program design. Personal Interests: Cycling for transportation, recreation, and fitnes Weight training for fun and functional capacity Sustainable development for the future; attitudes, practices, technologies, etc |
Michael Filla Senior Research Associate B.S. Biology – University of Missouri, Kansas City and 15+ years lab experience Personal Interests: Canoeing Missouri streams in the Fall and Winter months; Home brewing and Brown and Pale Ales-Hops, Hops and more Hops |
![]() |
||
|
Anastasiia Aleksandrova |
