Surgical Bleeding and Blood Replacement

Stepheny Berry, MD
Department of Surgery
University of Kansas
Introduction

► Hemostasis defined by Virchow as the balance among blood flow, humoral factors, and cellular elements of the vascular system.

► Two coagulation pathways
 - Intrinsic
 - Extrinsic

► Platelets play a vital role early in hemostasis with the formation of the platelet plug

► Platelets release factors that promote hemostasis at the site of injury

► The intrinsic and extrinsic pathways lead to formation of Xa which starts the common pathway to coagulation
Introduction

- Negatively charged phospholipid phosphatidylserine is found on the inner leaflet of mammalian cells.
- Collagen or thrombin exposure changes the distribution of phospholipids to the external leaf.
- This provides a pro-coagulant surface for the various steps to take place.
- This also selects the activation to the site of injury.
FIGURE 30-2 Coagulation cascade. Protease network in coagulation, fibrinolysis, and kallikrein-kinin systems. HMWK, high-molecular-weight kininogen; AT-III, antithrombin III; TF, tissue factor; TFPI, tissue factor pathway inhibitor; HC-II, heparin cofactor II; FDPs, fibrinogen degradation products; PAI, plasminogen activator inhibitor; sc-uPA, single-chain urokinase plasminogen activator; APC, activated protein C; tPA, tissue plasminogen activator.
Intrinsic Pathway

- Factor XII becomes activated in the contact phase of coagulation
 - Combines with XI, prekallikrein, and high molecular weight kininogen
 - Come together on the highly negatively charged surfaces experimentally
- Factor XII is then activated by an unknown mechanism
- Factor XIIa converts prekallikrein to kallikrein
- Kallikrein converts factor XII to XIIa
- XIIa converts XI to XIA
- XIa converts IX to IXA
Intrinsic Pathway

► IXa with its cofactor VIII plus calcium and phospholipid membranes form the “tenase” complex
 ▪ This complex converts X -> Xa
 ▪ Xa activates the common pathway

► This complex is enhanced by two mechanisms
 ▪ The phospholipid membrane allows the enzymes to become more easily saturated
 ▪ Helps localize coagulation response to where it’s needed
Extrinsic Pathway

- Circulating factor VII encounters tissue factor and activates

- Tissue factor
 - Transmembrane glycoprotein normally expressed by fibroblast like cells that surround the blood vessel
 - Endothelium shields circulating blood from exposure to tissue factor
 - Activated monocytes, atherosclerotic plaques, and activated endothelial cells express tissue factor

- Factor VII
 - Weak procoagulant
Extrinsic Pathway

► Factor VII
 - 10,000,000 fold increase in activity when bound to tissue factor
 - How VII activated unknown (activation by Xa)
 - Both VII and VIIa bind to tissue factor
 - VIIa activates Xa

► IX activated by VII showing a cross activation of the two pathways

► Activation of X by the IXa/VIII complex is 50 times greater than the activation by VII/TF
Common Pathway

► Factor Xa
 - Combines with Va, calcium, and the phospholipid membrane to form prothrombinase complex
 - Converts prothrombin to thrombin

► Factor Va
 - Factor Xa and Va are present in stoichiometric amounts and cause an alteration in the binding site of Xa to increase the catalytic efficiency
 - Binds to prothrombin and sequesters it to the site of the prothrombinase complex
 - Produces a 300,000 fold increase in rate of prothrombin conversion

► Factors V and VIII are activated by proteases but are not active proteases themselves
Common pathway

► Thrombin and Fibrin
- Cleaves the soluble protein fibrinogen to produce the insoluble fibrin monomer
- Factor XIIIa cross links these monomers and allows formation of the meshwork of the thrombus
- Thrombin activates
 - Factors XII, XI, VII, and V
 - Activates platelets
 - Activates Protein C
 - Stimulates endothelial cells to produce plasminogen inhibitor
Role of Platelets

- Disc shaped, anuclear particles that circulate in a nonadhesive state in the undamaged circulation

- Changes in the platelet surface in the activated vs inactive state
 - Inactive- mostly phosphatidylcholine
 - Activated- mostly phosphatidylserine

- Contain a contractile system and storage granules
 - α granules contain platelet factor 4, thromboglobulin, PDGF, P-selectin, fibrinogen, factor V, vWF
 - β granules contain ATP, ADP, and serotonin
Role of Platelets

- First step toward platelet aggregation is adhesion
- Aggregation prevented by
 - Heparan sulfate- activates antithrombin
 - Thrombomodulin- activates protein C
 - PAI- induces fibrin degradation
 - TFPI- inhibits TF
 - Prostacyclin I2- raises CAMP levels and NO levels
- Injured endothelium promotes adhesion of platelets
- Platelet adhesion promotes activation
- Thrombin is the most potent aggregation factor for platelets
Other Factors

► Platelet integrins
 - GP Ib- vWF
 - GP Ia/IIa- collagen
 - GP IIb/IIIa- fibrinogen and fibronectin (most abundant)

► Leukocytes
 - Express minimal amounts of procoagulant activity normally
 - Monocytes express TF
 - Contain XI-VIII receptors which allows intrinsic pathway activation
 - Linked to thrombosis in sepsis

► Endothelium
 - Important in the regulation of coagulation
 - Undamaged
 - Thrombomodulin, fibrinolytic mediators, prostaglandins, NO, TFPI
 - Damaged
 - TF, PAI, vWF, procoagulant proteins
Endogenous Inhibitors

► Antithrombin
 ▪ Serine protease inhibitor (SERPIN)
 ▪ Primary inhibitor of coagulation
 ▪ Targets most coagulation proteases, plasmin, and kallikrein

► Heparin cofactor II
 ▪ Resembles antithrombin
 ▪ Only has activity against thrombin

► Protein C
 ▪ Keeps blood in fluid state
 ▪ Activated when thrombin binds to thrombomodulin
 ▪ Cleaves membrane bound Va and VIIIa
 ▪ Needs Protein S and factor V as cofactors
History and Physical Exam

► Detailed bleeding history
 - ? Bleeding after dental procedures, minor cuts, previous OR, prolonged menses, easy bruising, nose bleeds
 - Family history

► Physical Exam
 - Few true physical signs
 - Splenomegaly, hepatomegaly, hemarthroses, petechia (plt) or ecchymosis (coag)
Diagnostic Testing

- Bleeding is common
- Diagnosis of the underlying reason is vital
- Test of coagulation
 - PT
 - Extrinsic pathway
 - Measured by subjecting citrated plasma to TF, phospholipids, and calcium
 - Vitamin K dependent factors- II, VII, XI, X, V
 - INR
 - Corrected with FFP and/or Vitamin K
 - Can be elevated with high doses of heparin
 - aPTT
 - Intrinsic pathway
 - Unfractionated Heparin
 - Not used for low molecular weight Heparin
Diagnostic Testing

- **ACT**
 - Gross measurement of aPTT
 - Exposure to diatomaceous earth
- **Thrombin Time**
 - Thrombin induced conversion of fibrinogen to fibrin
 - Useful in monitoring thrombolysis/DIC
 - Rarely used
- **Bleeding Time**
 - Time needed for a superficial wound to clot
 - Tests mainly platelet function/number
 - Done by making a controlled wound with a template
- **Other tests**
 - Euglobulin Clot Lysis Time- time needed for clot to lyse in a test tube
 - Thromboelastography- blood placed in oscillating chamber allows complete evaluation of blood clotting ability
 - Platelet aggregability
 - Fibrinogen level
Causes of Bleeding

- Coagulopathic bleeding Congenital
 - Platelet Disorders
 - Rare
 - Divided into problems of adhesion, aggregation, secretion, and procoagulant activity
 - Treatment is platelets or DDAVP

- Von Willebrand Disease
 - Quantitative or qualitative defect of vWF
 - Carrier for factor VIII
 - Most commonly inherited bleeding disorder (incidence 1-2%)
 - Easy bruising, mucosal bleeding, menorrhagia, epistaxis, etc...
 - Treatment rarely required but if bleeding then DDAVP or factor VIII/vWF concentrate

Table 33-3 Inherited Platelet Disorders

<table>
<thead>
<tr>
<th>DISORDER</th>
<th>INHERITANCE</th>
<th>DEFECT</th>
<th>CAUSE</th>
<th>TREATMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bernard-Soulier syndrome</td>
<td>AR</td>
<td>Platelet adhesion</td>
<td>GP Ib-IX-V deficiency</td>
<td>Platelet transfusion</td>
</tr>
<tr>
<td>Glanzmann’s thrombasthenia</td>
<td>AR</td>
<td>Platelet aggregation</td>
<td>αIIbβ3 integrin</td>
<td>Platelet transfusion</td>
</tr>
<tr>
<td>Gray platelet syndrome</td>
<td>AR</td>
<td>Platelet secretion (alpha granule)</td>
<td>ξ-granule proteins are absent</td>
<td>Platelet transfusion, DDAVP</td>
</tr>
<tr>
<td>Quebec platelet disorder</td>
<td>AD</td>
<td>Platelet secretion (alpha granule)</td>
<td>Alpha granule proteins are degraded</td>
<td>Platelet transfusion, DDAVP</td>
</tr>
<tr>
<td>Wiskott-Aldrich syndrome</td>
<td>XR</td>
<td>Platelet secretion (dense granule)</td>
<td>Defect in dense granule secretion due to absence of WASP</td>
<td>Platelet transfusion, DDAVP, cryoprecipitate</td>
</tr>
<tr>
<td>Hermansky-Pudlasky syndrome</td>
<td>AR</td>
<td>Platelet secretion (dense granule)</td>
<td>Ceroid-lipofuscin-like lysosomal storage disease</td>
<td>Platelet transfusion, DDAVP, cryoprecipitate</td>
</tr>
<tr>
<td>Chédiak-Higashi syndrome</td>
<td>AR</td>
<td>Platelet secretion (dense granule)</td>
<td>Presence of giant inclusion bodies</td>
<td>Platelet transfusion, DDAVP, cryoprecipitate</td>
</tr>
</tbody>
</table>

AD: autosomal dominant; AR, autosomal recessive; DDAVP, desmopressin acetate (1-deamino-8-arginine vasopressin); GP, glycoprotein; XR, X-linked recessive.
Table 33-4 Inherited Defects of Coagulation Factors

<table>
<thead>
<tr>
<th>DISEASE</th>
<th>FACTOR DEFICIENCY</th>
<th>INHERITANCE</th>
<th>DIAGNOSIS</th>
<th>TREATMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemophilia A</td>
<td>VIII</td>
<td>XR</td>
<td>Specific factor assay</td>
<td>Factor VIII</td>
</tr>
<tr>
<td>Hemophilia B</td>
<td>IX</td>
<td>XR</td>
<td>Specific factor assay</td>
<td>Factor IX</td>
</tr>
<tr>
<td>Hemophilia C</td>
<td>XI</td>
<td>AR</td>
<td>Specific factor assay</td>
<td>Factor XI</td>
</tr>
<tr>
<td>Fibrinogen disorders</td>
<td>I</td>
<td>Variable</td>
<td>Fibrinogen levels and analysis</td>
<td>Cryoprecipitate</td>
</tr>
<tr>
<td>Abnormal prothrombin</td>
<td>II</td>
<td>AR</td>
<td>Specialized assays</td>
<td>Variable replacements</td>
</tr>
<tr>
<td>Parahemophilia</td>
<td>V</td>
<td>AR</td>
<td>Specific factor assay</td>
<td>FFP</td>
</tr>
<tr>
<td>Factor VII deficiency</td>
<td>VII</td>
<td>AR</td>
<td>Specific factor assay</td>
<td>Factor VII</td>
</tr>
<tr>
<td>Stuart-Prower factor deficiency</td>
<td>X</td>
<td>AR</td>
<td>Specific factor assay</td>
<td>FFP, prothrombin complex concentrates</td>
</tr>
<tr>
<td>Hageman factor deficiency</td>
<td>XII</td>
<td>AR</td>
<td>Specific factor assay</td>
<td>Factor XIII, cryoprecipitate</td>
</tr>
<tr>
<td>Factor XIII deficiency</td>
<td>XIII</td>
<td>AR</td>
<td>Specific factor assay</td>
<td></td>
</tr>
</tbody>
</table>

AR, autosomal recessive; FFP, fresh frozen plasma; XR, X-linked recessive.

Table 33-5 Characteristics of the Various Clotting Factors Required for Safe Surgical Hemostasis

<table>
<thead>
<tr>
<th>FACTOR</th>
<th>IN VIVO HALF-LIFE</th>
<th>LEVEL REQUIRED FOR OPERATIVE HEMOSTASIS</th>
<th>STABLE IN PLASMA IF</th>
<th>BEST OPTIONS FOR REPLACEMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>3-4 days</td>
<td>100 mg/dL</td>
<td>4°C</td>
<td>FFP, cryoprecipitate</td>
</tr>
<tr>
<td>II</td>
<td>2-5 days</td>
<td>20-40%</td>
<td>4°C</td>
<td>FFP, concentrates</td>
</tr>
<tr>
<td>V</td>
<td>15-36 hr</td>
<td><25%</td>
<td>Frozen</td>
<td>FFP, platelets</td>
</tr>
<tr>
<td>VII</td>
<td>4-7 hr</td>
<td>10-20%</td>
<td>4°C</td>
<td>Concentrates, FFP</td>
</tr>
<tr>
<td>VIII</td>
<td>9-18 hr</td>
<td>≥85%</td>
<td>Frozen</td>
<td>Concentrates, cryoprecipitate, FFP</td>
</tr>
<tr>
<td>IX</td>
<td>20-24 hr</td>
<td>≥50%</td>
<td>4°C</td>
<td>Concentrates, FFP</td>
</tr>
<tr>
<td>X</td>
<td>32-48 hr</td>
<td>10-20%</td>
<td>4°C</td>
<td>FFP, prothrombin complex concentrates</td>
</tr>
<tr>
<td>XI</td>
<td>40-80 hr</td>
<td>15-25%</td>
<td>4°C</td>
<td>Concentrates, FFP</td>
</tr>
<tr>
<td>XII</td>
<td>48-52 hr</td>
<td>None</td>
<td>4°C</td>
<td>Not necessary</td>
</tr>
<tr>
<td>XIII</td>
<td>12 days</td>
<td><5%</td>
<td>Frozen</td>
<td>Concentrates, cryoprecipitate, FFP</td>
</tr>
<tr>
<td>vWF</td>
<td>Few hours</td>
<td>25-50%</td>
<td>Frozen</td>
<td>Concentrates, cryoprecipitate, FFP</td>
</tr>
</tbody>
</table>

FFP, fresh frozen plasma; vWF, von Willebrand's factor.

Causes of Bleeding

► Coagulopathic bleeding congenital cont’d
 ▪ Hemophilia
 ► A or B
 ► Hallmark is repeat bleeding into joints and muscles
 ► Levels
 ▪ <1% severe
 ▪ 1-5% moderately severe
 ▪ 6-25% mild
 ► Treat with factor replacement
 ► If immunity develops to exogenous factors → activated factor VII
 ► A
 ▪ Factor VIII
 ▪ X-linked recessive
 ▪ 1 in 5000 men affected
 ▪ 3% prevents spontaneous hemorrhage
 ▪ 30% for mild bleeding, 50% for major bleeding
 ▪ 80-100% during OR and 30% post op for 2 weeks
Causes of Bleeding

- **Hemophilia cont’d**
 - B
 - Accounts for 20% of hemophilia
 - X-linked recessive
 - Indistinguishable from hemophilia A
 - 20-30% levels for minor bleeding
 - 50-100% for 2 weeks post op

- **Acquired disorders of hemostasis**
 - Liver disease (decreased prothrombin, V, VII, X)
 - EtOH (thrombocytopenia)
 - Hypersplenism (thrombocytopenia)
Treatments

► Whole Blood
 - Occasionally used in the military, not readily available here

► PRBC
 - Stored @ 4 degrees Celsius up to 5 weeks
 - Restore oxygen carrying capacity
 - Transfuse to 7 mg/dL minimum

► FFP
 - Replaces all coagulation factors, but not as rich in factor VIII
 - Can be stored frozen for up to 12 months at -30 degrees Celsius
 - Useful in elevated PT
 - Useful when specific factor not available
Treatments

- **Platelets**
 - Prophylactic in massive hemorrhage
 - Contain a substantial amount of FFP and V
 - Need 20/mcL minimum for normal hemostasis 50-70/mcL for active bleeding

- **Cryoprecipitate**
 - Rich in VIII, vWF, fibrinogen, and fibronectin
 - Most commonly used to increase fibrinogen
 - Can be stored at -30 degrees Celsius for 12 months

- **Desmopressin**
 - Synthetic vasopression
 - Increases release of factor VIII and vWF
 - Improves platelet adhesion
Treatments

► Vitamin K
 - Carboxylates already synthesized factors stored in hepatocytes
 - Slower more durable correction

► Protamine Sulfate
 - Positively charged protein that reverses the effect of negatively charged heparin
 - 1mg/100u heparin
 - Can cause hypotension, pulmonary HTN, anaphylaxis, death
 - Derived from Salmon Semen

► Antifibrinolytic agents
 - i.e. Amicar
 - Block plasminogen primarily or the effect of plasmin on fibrinogen and fibrin

► Specific factors
Transfusion Reactions

► Febrile Transfusion Reactions
 - Most common
 - Treated with antipyretics and antihistamines
 - Removal of white cell debris from PRBC, plt and FFP reduces risk
 - Can be pre-treated if pt has history

► Hemolytic Transfusion Reaction
 - STOP administration of blood
 - Return to lab for repeat crossmatch
 - May require pressors to support BP, maintenance of renal perfusion, management of DIC
 - Treat with volume support first, pressors if needed, diuretics to maintain UO, and HD if renal failure
Transfusion Reactios

► Infection

- Hep C – 1 in 1,390,000
- Hep B – 1 in 200,000-500,000
- HIV – 1 in 2,000,000
- HTLV - <1 in 2,000,000
- West Nile Virus (11 documented cases)
- Syphilis – none in 30 years
- Chagas Disease – extremely low, red cross qualifies each donor rather than each donation for negativity
- Bacterial infection most common with plt transfusion

► Volume Overload
Transfusion Reactions

► Massive Transfusion
 - Coagulopathy, hypothreemia, citrate toxicity (liver dysfxn), electrolyte abnormalities (hyperkalemia, acidemia, hypocalcemia)

► TRALI
 - Acute lung injury developing within 6 hours of transfusion
 - Rapid onset of tachypnea, cyanosis, dyspnea, fever
 - Acute hypoxemia (paO2/FiO2 <300)
 - Wedge pressure < 18mmHg
 - Treatmens: aggressive resp support, may need mechanical ventilation
 - Leading reported cause of fatal transfusion reactions in the US in 2003/4
Hypercoagulable States

► Congenital disorders
 - Activated protein C resistance most common
 - Most common cause of APCR is Factor V leiden deficiency
 - ATIII deficiency
 - Protein C & S deficiency
 - Hyperhomocysteinemia

► Acquired disorders
 - Decreased production (liver failure)
 - Ineffective fibrinolysis
 - High levels of clotting factors (upregulated during stress)
 - Thrombocytosis
 - Antiphospholipid syndromes
 - Chronic cases of DIC
 - Hyperhomocysteinemia (in pts with renal failure)
Hypercoagulable States

► Diagnostic Evaluation
 ▪ Activated protein C resistance test
 ▪ Antithrombin III activity assay
 ▪ Proteins C & S activity
 ▪ Antiphospholipid antibody
 ▪ Prothrombin activity (screening for prothrombin 20210)
 ▪ Serum homocystine level

► Management
 ▪ Therapeutic anticoagulation for VTE (heparin/coumadin/antiplatelet)
 ▪ Treat hyperhomocystenemia
 ▪ DVT prophylaxis for high risk patients
Spleen

Stepheny Berry, MD
Department of Surgery
University of Kansas
Objectives

- Anatomy & Physiology
- Surgical disorders
- Consequences of Splenectomy
- Complications
Anatomy

- Embryology – develops from the dorsal mesogastrium by the 6th gestational week
- Receives 5% cardiac output
- Dual arterial/venous supply (splenic vessels and short gastric vessels)
 - Splenic artery – branch of the celiac
 - Short gastrics – from left gastroepiploic artery
Anatomy

- LUQ bound by the diaphragm and rib cage
- Intimately assoc w/ pancreas, stomach, left kidney, colon and diaphragm
- Multiple ligaments: splenorenal, gastroplenic, splenocolic and splenophrenic ligaments
Anatomy

► Accessory spleens: most commonly found in the splenic hilum, followed by the splenocolic ligament, gastrocolic ligament, splenorenal ligament and omentum.
 ▪ Important to know when performing splenectomy for hematologic disorders

► Polysplenia: multiple small spleens, no normal spleen
 ▪ Assoc w/ cardiac defects, situs inversus, biliary atresia

► Asplenia: absence of spleen
 ▪ Lethal condition assoc w/ cardiac defects and situs inversus

► Splenogonadal Fusion
 ▪ Rare disorder. Splenic tissue found in scrotum, attached to testicle.
Physiology

► Functions
 - Hematopoiesis
 - Blood filtering
 - Immune modulation

► Structure
 - Blood enters spleen through central arteries
 - Branch to trabecular arteries – white pulp
 - Then goes to the marginal zone (sinuses) and directed either to the red pulp or back to white pulp
Physiology

► White Pulp
 - Surrounded by lymphatic sheaths (T-lymphocytes and macrophages) that process soluble antigens
 - Some goes into lymphatic follicles, where B-lymphocytes can proliferate. Plasma cells are also found here.

► Red Pulp
 - Reticular network, no endothelial cells, moves slowly through numerous macrophages, then enters sinuses
 - Antibody-sensitized and particulate material removed
Physiology

- Filters and sequesters abnormal and aged erythrocytes, granulocytes and platelets
- Nearly 350 L/day filtered through spleen
- Immune function – reticuloendothelial system
 - Specific
 - Antigen processing and antibody production.
 - Largest producer of IgM
 - Non-specific
 - Clearance of opsonized particles and bacteria by splenic macrophages
 - Production of opsonin (properdin, tuftsin, fibronectin)
Surgical Disorders of the Spleen

► Splenic Rupture
 ▪ Trauma
 ▪ Spontaneus
 ▪ Iatrogenic injury

► Hematologic Disorders
 ▪ Hematolytic anemias
 ▪ Hereditary spherocytosis
 ▪ Thalassemias
 ▪ ITP
Surgical Disorders of the Spleen

- Hypersplenism from other Diseases
 - Inflammation
 - Infiltrative diseases
 - Congestion

- Leukemia and Lymphoma

- Other Diseases
 - Splenic abscess
 - Primary and metastatic tumors
 - Cysts
 - Splenic artery aneurysm
 - Isolated gastric varices
Surgical Disorders of the Spleen

► Splenic Trauma
 ▪ Most commonly injured organ after blunt trauma
 ► Usually has associated injuries (rib fractures, TBI, ortho injuries, liver injuries)
 ▪ Also common in penetrating trauma
 ▪ Management based on hemodynamic stability of the patient.
Splenic Trauma

► ATLS protocol for all patients

► Physical Exam
 - Unreliable in trauma patients
 - 20% of patients with splenic injuries have rib fx
 - LUQ pain/tenderness
 - Kehr’s sign – referred pain in left shoulder
 - Balance’s sign – percussion dullness to left flank
Splenic Trauma

► FAST
- Quick, good in “unstable” patients
- Non-specific – tells you fluid or no fluid
- Unstable pt with positive fast = OR

► CT
- Better for stable patients, more specific, diagnostic test of choice
- Allows for grading of injury and measurement of hemoperitoneum
- Able to diagnose other injuries as well
Splenic Trauma

- Grading scale to determine severity and uniformity of diagnosis
- No rule about certain grade needing splenectomy, but some generalizations
 - Elderly more likely to fail non-op
 - Higher grades more likely to fail non-op
 - Large amt of hemoperitoneum more likely to fail non-op

<table>
<thead>
<tr>
<th>Grade*</th>
<th>Injury type</th>
<th>Description of injury</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Hematoma</td>
<td>Subcapsular, <10% surface area</td>
</tr>
<tr>
<td></td>
<td>Laceration</td>
<td>Capsular tear, <1cm parenchymal depth</td>
</tr>
<tr>
<td>II</td>
<td>Hematoma</td>
<td>Subcapsular, 10%-50% surface area; intraparenchymal, <5 cm in diameter</td>
</tr>
<tr>
<td></td>
<td>Laceration</td>
<td>Capsular tear, 1-3cm parenchymal depth that does not involve a trabecular vessel</td>
</tr>
<tr>
<td>III</td>
<td>Hematoma</td>
<td>Subcapsular, >50% surface area or expanding; ruptured subcapsular or parenchymal hematoma; intraparenchymal hematoma ≥ 5 cm or expanding</td>
</tr>
<tr>
<td></td>
<td>Laceration</td>
<td>>3 cm parenchymal depth or involving trabecular vessels</td>
</tr>
<tr>
<td>IV</td>
<td>Laceration</td>
<td>Laceration involving segmental or hilar vessels producing major devascularization (>25% of spleen)</td>
</tr>
<tr>
<td>V</td>
<td>Laceration</td>
<td>Completely shattered spleen</td>
</tr>
<tr>
<td></td>
<td>Vascular</td>
<td>Hilar vascular injury with devascularizes spleen</td>
</tr>
</tbody>
</table>

*Advance one grade for multiple injuries up to grade III.
Hematologic Disorders

► Hypersplenism vs splenomegaly
 ▪ Hypersplenism – excess fxn of spleen and causes cytopenia (anemia, leukopenia, thrombocytopenia)
 ▪ Splenomegaly (anatomic enlargement of the spleen)

► Hereditary Spherocytosis
 ▪ Autosomal dominant
 ▪ Deficiency in spectrin and makes rigid RBC which become sequestered in the red pulp
 ▪ Splenectomy to prevent anemia (wait until age 5, if possible)

► Metabolic hemolytic anemia
 ▪ Pyruvate kinase deficiency, G6PD deficiency, etc
 ▪ Not responsive to splenectomy
Hematologic Disorders

► Sickle Cell
 - Autosomal recessive
 - Rigid cells at low O2 sats
 - Also lead to increased viscosity, stasis and thrombocytosis
 - Usually infarct spleen and become functionally asplenic
 - Splenectomy may be beneficial during hemolytic crisis and splenomegaly

► Thalassemias
 - Major (homozygous beta thalassemia) – reduces transfusion requirements, splenomegaly and rupture
 - Minor (heterozygous beta thalassemia) – decreases transfusion requirements and issues with iron overload
Hematologic Disorders

► Thrombocytopenia
 ▪ Splenectomy only appropriate for idiopathic immune mediated thrombocytopenia (cause can’t be found)

► ITP
 ▪ Usually after an acute viral infection
 ▪ Women > men
 ▪ Steroids first
 ▪ If no response, may benefit from splenectomy
 ▪ Better response to splenectomy if good response w/ steroids, but recurrence once steroids are tapered.
Hematologic Disorders

► TTP
 - Disease of arteries or capillaries
 - Fevers, purpura, hemolytic anemia, neurologic manifestations, renal disease
 - Plasmapheresis is treatment

► HIV assoc Thrombocytopenia
 - Splenectomy if AIDS and symptomatic thrombocytopenia resistant to medical management
Hypersplenism from other diseases

► Congestive splenomegaly
 ▪ Usually as result of liver failure
 ▪ Treatment of portal hypertension
 ▪ Splenectomy contra-indicated as one of the treatments for portal hypertension is splenorenal shunt

► Infiltrative Splenomegaly
 ▪ e.g Gaucher’s disease
 ▶ Partial splenectomy or embolization used to treat symptoms (hypersplenism an pain from splenomegaly)

► Felty’s Syndrome
 ▪ RA pts with leg ulcers and assoc splenomegaly ane neutropenia
 ▪ Splenectomy controversial as results are unpredictable
Hematologic Malignancies

► Acute Leukemia
 ▪ Not indicated

► Chronic Leukemia
 ▪ Rarely for hypersplenism or sx of splenomegaly

► Leukemic reticuloendotheliosis
 ▪ Hairy cell leukemia
 ▪ For palliation of cytopenia and sx of splenomegaly with advent of medications

► Hodgkin’s disease
 ▪ Not routinely part of staging laparotomy anymore because of newer imaging techniques

► Non-hodgkin’s lymphoma
 ▪ Rarely indicated for hypersplenism or sx of splenomegaly
Splenectomy

- Midline incision, left subcostal incision (Kehr’s incision), or laparoscopic
- Mobilized from its retroperitoneal attachments bluntly
- Splenocolic, splenophrenic and splenorenal ligaments divided with electrocautery
- Short gastric arteries individually ligated in the gastrosplenic ligament near the spleen
- Splenic artery and vein are then individually ligated close to the spleen
Consequences and Complications

► Transient leukocytosis and thrombocytosis
 - WBC increases by avg of 50% from baseline
 - Usually normalizes within 5-7 days
 - Plt increases by avg 30%
 - Usually normalizes within 2 wks

► Postsplenectomy sepsis
 - Higher incidence in children (2-4% vs 1-2% in adults)
 - Hematologic disorders at highest risk
 - Strep pneumo most common organism (H.flu, N.meningitidis, beta-hemolytic strep, S.aureus, E.coli, Pseudomonas)
 - Pts progress rapidly (within hours) to sepsis and even death despite appropriate abx
 - Waterhouse-Friderichsen’s Syndrome not uncommon
Consequences and Complications

► Encapsulated organisms
 - Vaccinate against S.pneumo, H.flu, N. meningiditidis
 - Before surgery appx 1 week, if possible

► Atelectasis
 - Most common complication, from discomfort related to upper abd incision
 - Pulmonary toilet

► Subphrenic abscess
 - Can develop assoc pleural effusion
 - Fluid collects in splenic fossa. Can become infected
 - No role for routine drain
Consequences and Complications

► Pancreatic injury
 ▪ 1-3% of patients
 ▪ Increased risk of abscess
 ▪ Can have pancreatic fistula, local pancreatitis, pancreatic pseudocyst
 ▪ Sx similar to subphrenic abscess

► Stomach injury
 ▪ Usually related to where short gastric arteries were ligated
 ▪ Subphrenic abscess or gastrocutaneous fistula
 ▪ Some surgeons advocate keeping NG for a couple days, but no data to support
Questions?