Essentials of Burn Care

Richard Korentager, MD, FACS, FRCSC
Plastic and Reconstructive Surgery
INTRODUCTION

- Over 2 million significant thermal injuries per year in US
- 7000 hospitalizations per year
- More than 5000 deaths per year
 - $\frac{1}{2}$ are children
- > 1,000,000 work days lost
- Direct costs > $1 billion
- Indirect costs > $3 billion
Mechanism of Injury

- Heat-scald, flame, flash, contact
- Electrical-low voltage/high voltage, lightening
- Chemical-acid, alkali, toxin
- Cold-frostnip/chilblains, trench foot, frostbit
ANATOMY OF SKIN

- Epidermis
- Dermis
- Subcutaneous tissue
- Dermal Appendages-hair follicles, glandular tissue
- Vascular and nervous structures
FIRST DEGREE BURNS

- Partial thickness burn/epidermis only
- Pain
- Erythema
- Peels in 2-3 days
- No scarring but damage to DNA (risk of malignancy and premature aging)
- Sunburn
SECOND DEGREE/PARTIAL THICKNESS BURNS

- Epidermis lost and variable amount of dermis
- Epidermal cells regenerate from dermal appendages, *dermis does not regenerate*
- Blisters usually present but may be very fragile, weeping wound and painful
- Healing time varies depending on depth of burn—superficial 2° burns don’t scar but may see significant pigmentary changes
- Give up to 3 weeks to heal without surgical intervention
FIRST AND SECOND DEGREE BURNS
THIRD DEGREE/FULL THICKNESS BURNS

- Full thickness burns result in complete loss of epidermis, dermis and appendages
- Pale /leathery appearance/char
- No spontaneous regeneration of skin
- Heals by contraction, epithelialization from the margins, scar formation
THIRD DEGREE BURNS
FOURTH DEGREE BURNS

- Involvement of muscle, tendon, bone and fascia or exposure of deeper structures
- Will often require local or distant tissue flaps for reconstruction—skin grafts must have a good bed for survival
Fourth Degree Burns
BURN DEPTH

- Temperature
- Duration of exposure
- Children have thinner skin
- Time to full thickness burn in scald injury
 - Adult $130^\circ \times 30$ sec.
 - Child $130^\circ \times 10$ sec.
 - Child $140^\circ \times 5$ sec.
BURN ZONES - Coagulation/Stasis/Hyperemia

Superficial 2° burn

Deep 2° burn
EXTENT OF BURNS

- Only count 2^0 and 3^0 burns, not 1^0
- Rule of nines
- Lund and Browder method
- Palm (including fingers) of patient = 1-1.5% TBSA (approximately)
RULE OF NINES

Adult body % of total
Part BSA
Arm 9%
Head 9%
Neck 1%
Leg 18%
Anterior trunk 18%
Posterior trunk 18%

Child body % of total
Part BSA
Arm 9%
Head and neck 18%
Leg 14%
Anterior trunk 18%
Posterior trunk 18%
LUND AND BROWDER METHOD
ESSENTIAL HISTORY

- Cause of burn, closed space vs. open
 - Inhalation risk
- Electrical/chemical involvement
- Age, health, medications
- Related trauma
- Obtain prehospital or simultaneously with initial treatment
ABA REFERRAL CRITERIA

- Second degree burns > 10% TBSA
- Burns involving face, hands, feet, genitalia, perineum, and major joints
- Third degree burns in any age group
- Electrical Burns (including lightening)
ABA REFERRAL CRITERIA

- Chemical burns
- Inhalation injury
- Preexisting medical conditions affecting outcome
- Concomitant trauma where burn is greatest risk of morbidity/mortality
INITIAL MANAGEMENT PRINCIPLES

- Airway management
- Circulatory management
- Stop the burning process
 - remove clothing/flush chemically exposed areas-protect yourself
 - remove rings/watches etc.
- NG tube
- Foley catheter
INITIAL MANAGEMENT PRINCIPLES

- Pain relief (IV only)
- tetanus immunization status/consider need for immune globulin
- Assess extremity pulses
 - escharotomy of extremities
- Assess chest/abdomen constriction
 - escharotomy of chest and abdomen
INITIAL MANAGEMENT
PRINCIPLES

- Watch for abdominal compartment syndrome - measure bladder pressure; if >30 mmHg need to decompress abdomen
- Universal precautions
- Emotional Support/suicide concerns
INITIAL MANAGEMENT
TRANSFER

- Thermal burns
 - cover burns with a clean dry sheet
 - prevents air currents from causing pain
 - prevents hypothermia
 - no ice (frostbite)
 - cold applications should be brief if at all
 - hypothermia must be avoided
Inhalation Injury

- Present in 20% to 50% of admissions
- Present in 60% to 70% of deaths
- 2^0 to products of incomplete combustion or other toxic agents
- Generally evident within first 5 days but may have few early signs
TYPES OF INHALATION INJURY

- CO poisoning
- Inhalation injury above the glottis
- Inhalation injury below the glottis
CARBON MONOXIDE: Pathophysiology

- CO binds to Hg with greater affinity than oxygen
- Results in hypoxia
- Most common cause of fatality at the scene
 - CO levels often 50%-70%
INHALATION INJURY
CO Levels

- >40% = altered consciousness, unconscious, seizures, coma, cardiac and respiratory compromise, death or neurological death

- 15% to 40% = vomiting, confusion, heart palpitations, extreme muscle weakness, throbbing headache, tachycardia

- 10% to 15% = asymptomatic or headache, fatigue, flu-like symptoms, weakness, SOB, dizziness, nausea, blurred vision, fatigue, ringing in ears, may appear intoxicated
INHALATION INJURY
ABOVE THE GLOTTIS

- Chemical or thermal
- Pure thermal injury almost always results in supra glottic injury
 - Efficient heat exchange of upper airway
- Airway obstruction early
- Airway obstruction late
 - After resuscitation
INHALATION INJURY BELOW THE GLOTTIS

- Usually chemical/particulate/steam injury
- Tracheobronchitis
 - severe spasm/wheezing
- Tissue response unpredictable
- Impaired ciliary activity/hypersecretion
- Erythema/edema/ulceration
Anhydrous Ammonia Inhalation

Day 1
Edema and mucous

Admit

Day 3
Raw surface
Mucous plug
AA Inhalation

Day 4
- Striations
- Loss of mucous membrane

Day 4
- Swollen glottis
- False vocal cords

Day 5
- Extensive damage and debris
INHALATION INJURY ASSESSMENT

- LOC
- Closed Space
- Noxious Chemicals
- Carbonaceous sputum
- Facial burns/singed nasal hairs
INHALATION INJURY ASSESSMENT

- Signs of hypoxemia
 - tachypnea/cyanosis/agitation/stupor
- Rapid RR/Flaring nostrils/Extra-respiratory muscle use
- Hoarse voice
- Rales/Rhonchi
- Erythema/edema of oro-nasopharynx
INHALATION INJURY
Initial Management

- 100% O₂ by face mask immediately
- With 100% oxygen ½ life of carbon monoxide decreased from 2.5-4 hrs to 45 min
- Bronchospasm, bronchorrhea, dyspnea, impaired oxygenation/hypercarbia indications for intubation
- **Stridor** = *Immediate Intubation*
 - secure with umbilical tape
 - post intubation CXR
- Cricothyroidotomony should not be necessary
Inhalation Injury

- Serial ABG and carboxyhemoglobin levels
- Nebulized heparin 5,000-10,000 U heparin alternating with 5 cc of 20% mucomyst Q4H
- Surfactant/nitric oxide experimental
- Hyperbaric oxygen may be of benefit with high levels of carbon monoxide but never delay transport or treatment to institute
SYSTEMIC RESPONSE - > 20% TBSA

- Increased vascular permeability leading to edema
- Decreased intravascular volume
- Hemoconcentration/increased hematocrit
- Decreased peripheral vascular resistance
- Decreased cardiac output
The aim of fluid resuscitation is to maintain vital organ perfusion while avoiding the complications of inadequate or excessive fluid administration.
FLUID NEEDS

PARKLAND FORMULA
First 240

Use Lactated Ringers
Adults: 2-4 ml x Kg Body Weight x % Burn
$\geq 20\%$ TBSA Burns

– Kids: 3-4 ml x Kg Body Weight x % Burn
$\geq 10\%$ TBSA Burns

plus their maintenance requirements-limited glycogen reserves (D5W 1/2NS)
FLUID INFUSION

- $0^\circ \text{ TO } 8^\circ$ post burn = 1/2 est. fluid vol.

- $8^\circ \text{ - } 24^\circ$ post burn = 1/2 est. fluid vol.

- Adjust according to urine output

- Time is calculated from time of burn injury, not when resuscitation started
INADEQUATE RESUSCITATION

- Shock
- Renal failure
- Death
SPECIAL CONSIDERATIONS
PATIENTS REQUIRING MORE FLUID THAN PREDICTED

- Electrical injury
- Inhalation injury
- Delayed resuscitation
- Prior dehydration
- Pregnancy
- Alcoholics
SPECIAL CONSIDERATIONS
VOLUME SENSITIVE PATIENTS

- > 60 YEARS OLD
- < 10 YEARS OLD
- Pre-existing cardiopulmonary or renal disease
- Anyone can be pushed in CHF
URINE OUTPUT

- Adults: 30 - 50 ml/hr
- Kids (<30Kg): 1.0ml/Kg/hr
- ↑ rate by 1/3 if UOP falls by 1/3
- ↓ rate by 1/3 if UOP increases by 1/3
ESCHAROTOMIES FOR PRESSURE RELEASE
WOUND MANAGEMENT
1^0 AND SUPERFICIAL 2^0 BURNS

- 1^0 burns only require moisturizing lotions/creams for comfort
- Superficial 2^0 burns require light dressings e.g., antibiotic ointments, non-stick gauze, hydrogels, silver dressings etc. and will heal within a week or two
- Don’t require use of SSD
WOUND MANAGEMENT

LARGE SUPERFICIAL 2° BURNS

- Large BSA-e.g. Steven-Johnson or TEN
- Autoimmune condition with separation at the dermal/epidermal junction
- Often benefit from xenograft/allograft or temporary artificial skin products
- Should heal within 7-21 days once disease process has stopped progressing/necrotic tissue debrided
WOUND MANAGEMENT DEEP 2° AND 3° BURNS

- Initial treatment with debridement of loose, necrotic tissue
- Topical antimicrobials-SSD, silver nitrate, mafenide
- Require surgical debridement and skin grafting in most cases-occasional flap reconstruction
NUTRITION/OTHER FACTORS

- Nutrition if essential to the healing of burn injuries
- Prefer enteral feeding but TPN required in some cases
- Dietician assistance in determining caloric and protein requirements
- Stop all factors with negative influence on wound healing-smoking/excessive alcohol etc.
WOUND MANAGEMENT DEEP 2° AND 3° BURNS
WOUND MANAGEMENT DEEP 2\(^0\) AND 3\(^0\) BURNS
Deep Flame Burn-Integra Dermal Template
Integra Dermal Template
3 weeks post application of Integra-ready for thin STSG
Healed-3 months post STSG with full ROM
Cultured Epidermal Autografts

- Biopsy taken/epidermal cells separated and grown in tissue culture
- Sheets of confluent epidermal cells but no dermal component
- Need dermal bed or equivalent for best results
- Problems with long term durability but can be life saving
WOUND MANAGEMENT
FACIAL BURNS

- Edema may be dramatic early on
 - elevate HOB
- Gentle debridement-consider enzymatic agent
- Antibiotic ointment/fine mesh gauze
- If require grafting use thicker sheet grafts in aesthetic units/FTSG for eyelids
WOUND MANAGEMENT
EYE BURNS

- Examine the eye early
 - Rapid edema formation may make it difficult later
- Fluorescein to identify corneal injury
- Chemical burn - irrigate with NS until normal Ph
- Ophthalmic antibiotics if corneal injury
- Ophthalmology consult
WOUND MANAGEMENT
HAND AND FOOT BURNS

- Vascular status
 - Cap refill/doppler/neurologic symptoms
 - May need escharotomy of hand/fingers
- Elevate above level of heart
- Light dressing with individualization of digits- avoid constrictive dressings
- Range of motion (active and passive) and splints to maintain position of function and prevent nerve compression
- Early debridement and grafting
SCAR CONTRACTURES
HAND AND FOOT BURNS
ELECTRICAL BURNS

- Low Voltage < 1000 volts
- High Voltage > 1000 volts
- High tension accidents 7200v - 19,000v
- Household current 100-220v (AC)
- DC accidents uncommon
 - car battery
 - lightening
Electrical Burns - Pathophysiology

- Injury dependant on current, pathway of flow of electrons, tissue resistance and duration of contact
- Tissue Resistance: least to most
 - Nerve, blood vessels, muscles, skin (varies depending on moisture), tendon, fat, bone

 Heat production in joules = current squared x tissue resistance x time of contact

- Tissue acts as volume conductor and all heated equally but dissipation of heat varies
INITIAL PROCEDURES

- Electrical injuries
 - look for entrance/exit wounds
 - 12 lead EKG
 - continuous cardiac monitoring
 - arrhythmia
 - Rhabdomyolysis - results in precipitation of myoglobin in kidneys leading to renal failure
ELECTRICAL BURNS Management

- Hx of injury - heat may ignite/melt clothing
- ABC's
- Neuro exam/hourly neurovascular checks
- Spinal injury or other associated injuries/fractures in >20% in high voltage injuries
- Titrate fluids based on response - cutaneous burn may underestimate true injury
ELECTRICAL BURNS
Management

- **Myoglobinuria**
 - UOP 100cc/hr
 - Bicarb 1 amp/L to alkalinize urine
 - Mannitol 12.5 g - acts as osmotic diuretic
 - Serial urine myoglobin

- **Arrhythmia**
 - 12 lead EKG/ 240 monitoring
 - Cardiac isoenzymes

- **Compartment syndrome**
 - Fasciotomies and if cutaneous involvement then escharotomies
ELECTRICAL BURNS: ORAL COMMISURE

- Occur when child sucks on poorly insulated electrical cord
- Deep burns of oral commisure and lips
- Initial conservative treatment and let eschar separate
- Make parents aware of possible labial artery bleeding at 7-10 days
ELECTRICAL BURNS: ORAL COMMISURE

- Once scar develops, may see microstomia: often need to treat with oral appliances to stretch tissues.
- Late reconstruction with flaps and FTSG as required.
Electrical lineman suffered high voltage contact burn >7200 v

Full thickness defect referred after 2 failed free tissue transfer attempts

To OR for debridement and local flap reconstruction
Scalping Flap for Calvarial Coverage
STSG to Cover Scalping Flap Defect
ELECTRICAL BURN

- Working underneath trailer home on plumbing
- Came in contact with electrical wiring that fell across his left face
- No other associated injuries
ELECTRICAL BURNS
Complex Defect

- After debridement, enucleation and placement of ocular spacer
- Exposed nasal bones and complete loss of eyelids
ELECTRICAL BURNS
Radial Forearm Free Flap

- Based on radial artery and venae commitantes
- Provides thin, pliable tissue for reconstruction of complex tissues
ELECTRICAL BURNS
Radial Forearm Free Flap

- Radial artery and venae commitantes anastamosed to the facial artery and vein
- Later stages reconstruction of eyelids and placement of ocular prosthesis
LIGHTENING INJURIES

- Not uncommon
- DC of 1.0×10^9v and 2.0×10^5amps
- 65% survival rate
- 150 - 300 deaths per year in US
 - Direct strike
 - Side flash
 - Arrhythmia
Lightning

- Direct Strike
 - Instant cardiac and respiratory arrest
 - Deep internal burns
 - Vascular damage
 - Boils sap in trees

- Side Strike
 - More common
 - Fern or leaf like pattern
 - Superficial injuries
 - Multiple patients
CHEMICAL BURNS

- **Alkalis**
 - oven cleaners/drain cleaners/fertilizers
 - Lye/lime

- **Acids**
 - battery acid/swimming pools chemicals

- **Organic compounds**
 - creosote/gasoline/kerosene
CHEMICAL BURNS
SEVERITY

- Agent
- Concentration
- Volume
- Duration of exposure
CHEMICAL BURNS
Treatment

- Do not delay/start at the scene
- Universal precautions
- Management
 - remove contaminated clothing
 - brush chemical powder from skin if any
 - copious water irrigation/watch runoff
- Do not neutralize! - will generate heat
WOUND MANAGEMENT
TAR BURNS

- Contact burn
- Bitumen non-toxic
- Cool molten material with cold water
- Dress with bacitracin = emulsification
- Assess depth when tar removed
 - not an emergency
Frostbite Injury

- Frostbite progresses from frostnip/trench foot
- Blistering - serous or hemorrhagic
- Tissues have pale, waxy appearance in end stage
- May be associated with systemic hypothermia
Frostbite Treatment

- Do not rewarm if risk of refreezing, minimize trauma to tissue
- Rapid rewarming in whirlpool bath, do not massage tissue, debride blister (high level of thromboxane)
- NSAID, aloe vera, topical antimicrobials
- Te99 scan/MRI to assess level, late surgery
THE FUTURE

- Noninvasive cardiac monitoring/burn depth determination
- Growth factors/cytokines
- True bilayer skin grown in culture
- Control over scar formation