JOSEPH FRANÇOIS FÉLIX BABINSKI (1857–1932)

As political refugees, Babinski’s parents fled in 1848 from Poland to Paris, where Joseph was born and grew up. He was graduated from the University of Paris in 1884. His thesis, of outstanding merit, dealt with multiple sclerosis. Under Charcot, he worked at the Salpêtrière, and from 1890 to 1927 headed the neurological clinic at the Hôpital de la Pitié. With Brissaud, Pierre Marie, Dejerine, Souques, and others, he founded the Société de Neurologie de Paris, to which he was profoundly devoted. The last years of his life were marred by paralysis agitans.

Babinski had a thorough training in general medicine before undertaking the study of neurology. His bibliography contains 288 items, the first on typhoid fever (1882), the last on hysteria (1930). At a meeting of the Société de Biologie in 1896, he described his “cutaneous plantar reflex.” The report contained but twenty-eight lines. Although this sign had been reported three years before by E. Remak, it was Babinski who first realized its diagnostic significance. In its simplicity, clinical importance, and physiological implications, Babinski’s sign has hardly an equal in medicine. The number of works devoted exclusively to “Babinski” runs into the hundreds, yet in 1900 its diagnostic importance was declared to be “minimal.” His description of the associated fanning of the toes, subsequently referred to as the signe de l’éventail, was published in 1903. Ranking among others of his important papers were those on combined flexion of thigh and trunk. Argyll Robertson pupil in cerebrospinal syphilis, cerebellar symptomatology, particularly asynergia and adiadochokinesis, deep and superficial reflexes, and reflexes of defense. In 1902, with Nageotte, he reported the syndrome of a unilateral bulbar lesion. The syndrome of dystrophia adiposogenitalis was outlined by him in 1900, a year before Fröhlich’s description.

His concept of hysteria, which he called “pithiatisme” (curable by suggestion), was that its manifestations were produced by suggestion and abolished by countersuggestion. Once, in 1926, he
demonstrated this to me impressively. After a few words to a young hysteric he squeezed her right thumb, and a hysterical attack resulted: he squeezed her left thumb and it stopped abruptly. Babinski was among the first to note that much of the symptomatology vanished from the hysterics at the Salpêtrière after Charcot's death.

What Babinski may have lacked in heroic flourish in examining a patient, he more than made up for by his meticulous scrutiny, conscientiousness, and patience. He was a genius in searching for defects, a man of the Société de Neurologie's own caliber, a speaker both a model and a work was charmed by. He worked for the little use of to the people, a trend of most been the justification.

But Babinski's was discerning a muscle spindlesmyopathic muscular dystrophy of multiple through long Babinski's spared the competitive he won, could devote Pitie, and his brother and his ankle theatre, especial was gastro intestinal round whispered aing perfection.

Babinski 1922, he to France. His portrait was in Martel and
defects, a man of inexorable logic. When, at a meeting of the Société de Neurologie de Paris, someone would present a case, Babinski's own examination of the patient would excite in the speaker both admiration and apprehension. Babinski's whole life work was characterized by absolute honesty and scientific integrity. He worked for neurology, not for the glory of Babinski. He made little use of technical procedures; he was a clinical neurologist **par excellence**, guided by the maxim *observatio summa lex*. Some trends of modern neurology toward undue mechanization makes one think that a plea “Back to Babinski!” would not be without justification.

But Babinski was not solely a clinician. In the laboratory he was a discerning histologist and histopathologist. He recognized the muscle spindle for what it was, distinguished neuropathic from myopathic muscle lesions, recognized the hallmarks of the muscular dystrophies, and, in drawing attention to the hemiplegic form of multiple sclerosis, clarified the topography of the plaques through longitudinal sectioning of the cord.

Babinski's way of life allowed time to contemplate. He was spared the chore of systemic teaching (having failed in the highly competitive examination for the title *Professeur agrégé*, which, had he won, would have made him Charcot's successor). He thus could devote his mornings to clinical practice and research at the Pitié and his afternoons in his private consulting room. At home his brother Henri, a distinguished engineer, was the housekeeper and his amanuensis. Evenings would frequently be spent in the theatre, especially at the opera or ballet. Another of his passions was gastronomy. He was known, on one occasion, to interrupt ward rounds and speed home in his carriage after a ward sister had whispered a telephone message in his ear that the soufflé was nearing perfection.

Babinski anticipated the approach of the neurosurgical era. In 1922, he localized the first spinal cord tumor to be removed in France. Six days before his death he said that his best contribution was not his sign, but the fact that he had shown the way to de Martel and Vincent, the founders of French neurosurgery.

ROBERT WARTENBERG
References

"Rev. neur., Paris, 1902, 10:784-785.
"Rev. neur., Paris, 1902, 10:1014.
12Ibid., 1900, 8:331-383.

ROBERT BÁRÁNY (1876-1936)

BÁRÁNY was born and brought up in Vienna, and it was there that he received his university training. After graduating in medicine in 1900, he became assistant in the medical clinic of von Noorden in Frankfurt-am-Main, worked in neurology with Kneipel in Heidelberg, and then went to Paris. In 1903 he returned to Vienna. Among his teachers was Sigmund Freud, of whom he liked to tell this story: Freud maintained that dreams are an expression of desire (Wunschträume). He said to his students: "If you cannot explain your dreams then come and see me." Bárány did so and described for Freud a dream which had nothing to do with desire. Freud said, "That is very simple. You had the desire to contradict me."

It was when he found a place in the ear clinic of Adam Politzer (later under Urbantschitsch) in Vienna in 1905 that Bárány was able to devote himself to the work for which he is best known. He was impressed by the rhythmic nystagmus produced by syringing the ears, a phenomenon which, as he discovered, was related to the
ON ADDITION OF THE TOPS

The diagram on the right shows the principle of the "tops" addition. The tops are added to the structure to increase its height and provide additional support. The tops are connected to the main structure through a series of bolts and nuts, ensuring a secure and stable connection.

The tops are made of high-strength steel and are designed to withstand the forces applied to the structure. They are painted to protect against corrosion and weathering.

The addition of the tops significantly improves the structural integrity of the building, making it more resistant to wind and other environmental forces.