HEAT EMERGENCIES

Dehydration and Heat Stroke

Lillian Slater NR-P RN MSN CEN CPEN

Objectives

- Define heat emergencies
- Appreciate the impact dehydration has on heat emergencies.
- Differentiate between heat stroke and other heat emergencies
- Describe the treatment of heat stroke
- List methods to prevent heat emergencies

Definitions

- **Dehydration**—Loss of body fluid is more than consumption of fluid.
- **Heat Cramps**—Cramping of abdominal and limb muscles due to the loss of fluid and electrolytes.
- **Heat Exhaustion**—Weakness due to dehydration.
- **Heat Stroke**—Life threatening condition due to the loss of control of internal temperature control.
- Heat stroke may occur as a progression of dehydration, heat cramps and heat exhaustion, or it may occur without previous heat illnesses.

Dehydration and Heat Stroke

- Common heat-related diseases that can be life-threatening if left untreated.

Epidemiology

- Heat waves claim more lives each year than all other weather-related exposures combined.
- According to the CDC, over three hundred per year.
- In the record hot year of 1980—1700 deaths were attributed to the heat.
- Deaths from heat may be underestimated, because of poor reporting.
- People from cold environments who travel to hot environments are at risk.
- Pilgrimage to Mecca in 1998 resulted in 2600 deaths in 10 weeks.

Epidemiology

- African Americans deaths are higher than Caucasian deaths
- Males die more than females
- Very old and very young are at higher risk
Thermoregulation

- Humans are mammals and require a constant temperature.
- Temperature is maintained by a balance of heat production and heat loss.
- Temperature is a component of Homeostasis.

Heat Production

- Basal rate of metabolism
- Increased metabolism caused by muscle activity
- Increased metabolism caused by the effect of thyroxine and other hormones
- Increased metabolism caused by the SNS
- Increased metabolism caused by the increase of temperature in the cell itself.

Metabolism

- Heat is a bi-product of metabolism.
- Metabolism is only 25% efficient.
- 75% of the energy produced by metabolism is heat.

How the body controls heat

- Radiation
- Conduction
- Convection
- Evaporation
- Respiration

Radiation

- Heat transferred through electromagnetic waves.

Conduction

- Gaining or losing heat from direct contact with a physical source.
Convection
- Heat gain or loss through contact with moving air or water molecules across the skin

Evaporation
- Only involved with heat loss. The loss of heat through the change of liquid to gas.

Respiration
- Heat and moisture loss.

Hypothalamus
- SNS
- Vasoconstriction/dilation
- Sweating
- Metabolism
- Hormonal

Hyperthermia
- Fever
 - > 100.4 F or 38 C
 - Controls bacteria production and the action of viruses
 - Enhances the immune response
- Environmental heat emergencies
 - Heat production far exceeds heat loss
 - May be fatal if untreated
Dehydration

- 60% of the total body composition is water
 - Intracellular 45%
 - Extracellular 15%
 - Intestinal 10.5%
 - Intravascular 4.5%

- Water
 - Essential nutrient
 - Required for all cellular function

- Water is important constituent in thermoregulation
 - Major component of blood volume
 - Water is lost through sweat, respiration and waste

Dehydration

- Sensible and nonsensible
 - Sensible loss
 - Active sweating
 - Urine
 - Vomiting
 - Diarrhea
 - Insensible loss
 - Normal sweating
 - Respiration
 - Feces

Dehydration

- When the body is dehydrated, a greater percentage of volume is lost through the intravascular space
- Symptoms of hypovolemic shock may occur

Signs and Symptoms of Dehydration

- Reduction in urination
- Dry skin
- Fatigue
- Light-headedness
- Confusion
- Dry mucous membranes
- Tachycardia and Tachypnea
- Poor skin turgor

Treatment of Dehydration

- Mild dehydration
 - Oral fluids
- Severe dehydration
 - IV fluids
 - Treat the underlying cause

Sweating

- Water can be lost by many mechanisms but in heat related illnesses, sweating is the common mechanism
- Sweat is made up of water and electrolytes (Na, K, Cl)
- When the hypothalamus senses and increase in body temperature, it increases the blood flow to the skin stimulating the sweat glands.
- When evaporation is minimal, the body can reabsorb the electrolytes from the skin.
Sweating

- During high-intensity exercise, 2 liters of water per hour
- Depends on
 - Environment temperature
 - Humidity
 - Type of clothing
 - Fitness level of individual
 - Acclimation of the individual to environment

Sweating

- Signs of dehydration
 - Dark colored urine
 - Muscle cramps
 - Fatigue
 - Do not depend of thirst to indicate dehydration!

Differentiating Heat Emergencies

Heat Stroke

- Sometimes referred to as Sun Stroke
- The body cannot sweat enough to lower the body temperature.
- Develops rapidly
- Types
 - Classic—Non exertional (NEHS)
 - More common in the elderly and young
 - Exercise induced—Exertional (EHS)
 - More common in the young athletes
 - All types of exercise can cause increased heat production

Risks Factors NEHS

- Older people living without AC or good air flow
- Dehydration
- Chronic disease (renal, HTN, heart disease, sickle cell diabetes)
- Medications (HTN, antipsychotics, sedatives, seizure)
- Alcohol abuse
- Illegal drugs (cocaine, meth)
- Non Mobile
- Obesity
- Outdoor workers

Children’s body temperatures can rise up to five times faster than that of an adult.
Heat Stroke in Children
- Do not leave children in automobiles!
- On a 83 F day, with the windows rolled down 2 inches, the inside of the car reaches 109 within 15 minutes!

Heat Island Effect
- Urban areas
 - Stagnant atmosphere with poor quality of air
 - Asphalt and concrete absorb the heat and gradually release it.

Occupational Risks
- Athletes
- Fire Fighters
- Soldiers
- Out door workers

Heat Stroke
- Core temperatures greater than 104 F 40 C
- Heat stroke is diagnosed by the signs and symptoms in an individual exposed to extreme temperatures
- Syncope may be the first symptom

Symptoms of Heat Stroke
- Other symptoms
 - Headache
 - Dizziness and lightheadedness
 - Lack of sweating
 - Muscle cramps
 - N/V
 - Tachycardia
 - Tachypnea
 - Confusion
 - Seizure

Heat Stroke
- One of the leading preventable causes of death in sports.
- EHS
- 2/3 of deaths are high school athletes occur in August

Risk factors
- Playing in hot weather
- Ignorance
- Lack of adequate hydration
- Overweight
- Lack of acclimatization
Acclimation
- Takes 7-10 days
- Allows individuals to sweat sooner and more profusely
- Increases the ability of sweat glands to reabsorb sodium

Pathophysiology
- Excessive heat:
 - Denatures protein
 - Destabilizes phospholipids and lipoproteins
 - Liquefies membrane lipids
 - Causes cardiovascular collapse
 - Causes SIRS and MODS
 - Ultimately may cause death!

Treatment
- Heat Stroke is an EMERGENCY!
- Time
 - Duration of hyperthermia is determinant of outcome
 - Rapid reduction of core body temperature is the cornerstone of treatment.

Other Cooling Methods
- Peritoneal, thoracic, rectal and gastric lavage with ice water
- Cold intravenous fluids
- Cold oxygen
- Cooling blankets
- Cardiopulmonary bypass

Treatment
- The American College of Sports Medicine recommends that treatment begin on scene.
- Cool to approximately 102°F 39°C
 - Prevents rebound hyperthermia.
 - Rectal temperatures are most accurate in assessment

Treatment
- Scene Safety and ABC
- Remove restrictive clothing
- Spray water on body
- Cover the body with iced wet sheets
- Ice packs in highly vascular areas
- R/O hypoglycemia
Pharmacological Interventions

- ASA and NSAIDS have no value and may be harmful
- Dantrolene has been studied
- Benzodiazepines have been given to reduce agitation and shivering
- Neuroleptics are not used
 - Lower the seizure threshold
 - Anticholinergic properties
 - Hepatotoxicity
- Benzodiazepine and barbiturates for seizures
 - Phenytoin is not indicated for seizures
 - Nonpolarizing paralytics
 - Monitor for seizures with EEG

Ongoing care

- Internal temperature monitoring
- NG tube to monitor gastric bleeding and fluid loss
- Monitor intake and output
- Temperature control may be impaired for several days to weeks
 - The goal is to cool the patient to 39 C at the rate of 0.2 C per minute.
 - IV therapy—monitor carefully

Ongoing care

- Monitor for rhabdomyolysis
 - May occur in 25-30% of EHS

Rhabdomyolysis

- Large amounts of myoglobin precipitates in the kidneys resulting in AKI
- Infuse large amounts of fluid—urine output 3 ml/kg/hr
- Alkalization of the urine (ph 7.5-8.0)
 - Prevents myoglobin precipitation in the kidneys
 - Controls acidosis and hyperkalemia
- Mannitol
 - Improves renal blood flow
 - Prevents fluid accumulation in interstitial compartment (osmotic)
 - Free radical scavenger

Metabolic support

- Muscle necrosis in EHS can lead to cardiac dysrhythmias due to:
 - Hyperkalemia
 - Hypocalcemia
 - Hyperphosphatemia
- Renal dialysis may be necessary
- Hypertonic dextrose and bicarbonate may be used to shift potassium.
- Insulin may cause liver failure in EHS
- Calcium should be used judiciously
 - May cause more muscle damage
 - May be indicated with ventricular dysrhythmias

Hepatic Injury

- Common but usually reversible
- Elevations of transaminase levels and bilirubin
 - May result in hypoglycemia, coagulopathies, cerebral edema
 - DIC and ARDS
- Treatment
 - Dextrose
 - Replacement of clotting factors, FFP, Platelets
 - Meticulous Respiratory support
 - Immunomodulators
Pulmonary Injury
- Fluid overload
 - Aggressive fluid resuscitation
 - Renal failure
 - CHF
- ARDS
 - Heat induced pulmonary damage
 - Aspiration
- Treatment
 - Ventilation with PEEP

Cardiovascular Injury
- Myocardial muscle damage
 - Dysrhythmias
 - Cardiac Arrest
- Increased pulmonary hypertension
 - Right heart failure

Renal Injury
- Direct thermal injury
- Myoglobinuria
- Hypotension and shock
- Treatment
 - IV fluids
 - Diuretics (Mannitol is the diuretic of choice)
 - Correct acid base and electrolytes
 - Dialysis

Prognosis
- Delay in treatment increases mortality by 80%
- Mortality is highest among:
 - Elderly
 - Individuals with pre-existing conditions
 - Individuals confined to bed
 - Individuals who are socially isolated
 - Thermal maximum

Prognosis
- Poor prognosis
 - Initial temperature higher than 106 F 41 C
 - Unable to get the temperature below 102 F 39 C
 - Prolonged coma
 - Pulmonary edema
 - Prolonged hypotension
 - Lactic acidosis in patients with NEHS
 - Acute kidney injury and hyperkalemia
 - High levels of Aminotransferase

Education
- Media
- Public education
- School programs
- Athlete safety programs
Prevention

- Rehydrate on schedule
- Cooling breaks
- Frequent visits to air-conditioned places
- Limit alcohol and caffeine beverages
- Modify physical activity
- Fans alone are NOT adequate

You can prevent heatstroke!

References